咨询电话:13280638997
传真:0533-3110363
邮箱:kefu@shizifang.com
24小时咨询热线著 录 项 目:
| 专利/申请号: | CN202410221484.6 | 专利名称: | 一种基于图神经网络的多变量时序异常检测方法及系统 |
| 申请日: | 2024-02-28 | 申请/专利权人 | 南京信息工程大学 |
| 专利类型: | 发明 | 地址: | 江苏省南京市江北新区宁六路219号 |
| 专利状态: | 已下证 查询审查信息 | IPC分类号: | G06F18/20 分类检索 |
| 公开/公告日: | 2024-03-29 | 转让价格: | 【平台担保交易】 |
| 公开/公告号: | CN117786374A | 交易状态: | 等待洽谈 搜索相似专利 |
| 浏览量: | 31 | 所属领域: | 网络传输专利转让搜索 |
摘 要:本发明公开了一种基于图神经网络的多变量时序异常检测方法及系统,方法包括:获取待检测的时序输入数据,将时序输入数据输入至预设的时序异常检测模型进行时序异常判断;所述时序异常检测模型的构建过程包括:获取样本集合后利用样本集合对时序异常检测模型进行训练;将单位样本x转化为同时融合了时域与空域关系的融合时间序列#imgabs0#;将融合时间序列#imgabs1#输入至编码器输出中间特征#imgabs2#;将融合时间序列#imgabs3#和中间特征#imgabs4#输入至解码器获取训练输出序列,基于训练输出序列计算训练损失值并对时序异常检测模型的参数进行优化,输出训练后的时序异常检测模型;本发明能够更全面地分析多变量时间序列数据,从而提高异常检测的准确性和可靠性。
| 交易方 | 企业 | 个人 |
| 买家 | 营业执照副本复印件(需盖公章) | 身份证复印件(签字) |
| 专利转让委托书(需盖公章)一式两份 | 专利转让委托书(需签字)一式两份 | |
| 专利转让协议(需盖公章)一式两份 | 专利转让协议(需签字)一式两份 | |
| 卖家 | 营业执照副本复印件(需盖公章) | 身份证复印件(需申请人签字) |
| 解除代理委托书(需盖公章)一式两份(如专利通过代理机构申请) | 解除代理委托书(需签字)一式两份(如专利通过代理机构申请) | |
| 专利转让协议(需盖公章)一式两份 | 专利转让协议(需签字)一式两份 | |
| 专利请求书或手续合格通知书、授权通知书复印件 | 专利请求书或手续合格通知书、专利授权通知书复印件 | |
| 专利证原件(若授权下证) | 专利证原件(若授权下证) |
| 日期 | 法律信息 | 备注 |
| 2024/05/14 | 授权 | |
| 2024/04/16 | 实质审查的生效 | IPC(主分类): G06F 18/20 专利申请号: 202410221484.6 申请日: 2024.02.28 |
| 2024/03/29 | 公开 |
| 申请号 | 专利名称 | 发布日期 |
| 2020111847680 | 【发明】一种基于SVM-Adaboost的驾驶分心检测方法 | 2025/11/03 |
| 202510229245X | 【发明】基于快速谱峭度与时间序列大模型的设备早期故障检测方法 | 2025/11/03 |
| 2024101098778 | 【发明】一种基于对比学习的中学几何问题自动求解方法 | 2025/10/27 |
| 2025110564649 | 【发明】基于混合双向时域卷积网络的数据处理方法、设备和介质 | 2025/10/24 |
| 202510473533X | 【发明】数据缺失场景下的时间序列预测方法、装置、介质及设备 | 2025/10/24 |
| 202510380855X | 【发明】一种基于多任务学习的SSD故障预测方法、设备及介质 | 2025/10/24 |
| 2024101797058 | 【发明】一种多元时间序列异常预测方法、电子设备及存储介质 | 2025/10/24 |
| 2023114681337 | 【发明】一种时序数据异常检测方法、电子设备及存储介质 | 2025/10/24 |
| 2025103939683 | 【发明】一种基于深度学习的代码相似度检测方法 | 2025/10/24 |
| 202510873852X | 【发明】一种智能化旋转机械故障诊断方法 | 2025/10/23 |