咨询电话:13280638997
传真:0533-3110363
邮箱:kefu@shizifang.com
24小时咨询热线著 录 项 目:
| 专利/申请号: | CN201911347970.8 | 专利名称: | 一种基于傅里叶分解与多尺度排列熵偏均值的滚动轴承故障诊断方法 |
| 申请日: | 2019-12-24 | 申请/专利权人 | 安徽工业大学 |
| 专利类型: | 发明 | 地址: | 安徽省马鞍山市湖东路59号 |
| 专利状态: | 已下证 查询审查信息 | IPC分类号: | G06F18/213 分类检索 |
| 公开/公告日: | 2023-04-28 | 转让价格: | 【平台担保交易】 |
| 公开/公告号: | CN110866519B | 交易状态: | 等待洽谈 搜索相似专利 |
| 浏览量: | 23 | 所属领域: | 设备状态监测与故障诊断技术专利转让搜索 |
摘 要:本发明公开一种基于傅里叶分解与多尺度排列熵偏均值的滚动轴承故障诊断方法,属于设备状态监测与故障诊断技术领域。本发明的步骤为:采集待诊断的原始滚动轴承故障振动信号;利用傅里叶分解方法对原始滚动轴承故障振动信号进行分解;计算每个分量的多尺度排列熵偏均值;选取多尺度排列熵偏均值最大的前3个分量进行重构;对重构信号进行包络谱分析;根据包络谱图识别故障特征。本发明提供的滚动轴承故障诊断方法通过多尺度排列熵偏均值来表征每个分量的复杂程度,可以有效地得到故障特征频率及其倍频,诊断效果较好。
| 交易方 | 企业 | 个人 |
| 买家 | 营业执照副本复印件(需盖公章) | 身份证复印件(签字) |
| 专利转让委托书(需盖公章)一式两份 | 专利转让委托书(需签字)一式两份 | |
| 专利转让协议(需盖公章)一式两份 | 专利转让协议(需签字)一式两份 | |
| 卖家 | 营业执照副本复印件(需盖公章) | 身份证复印件(需申请人签字) |
| 解除代理委托书(需盖公章)一式两份(如专利通过代理机构申请) | 解除代理委托书(需签字)一式两份(如专利通过代理机构申请) | |
| 专利转让协议(需盖公章)一式两份 | 专利转让协议(需签字)一式两份 | |
| 专利请求书或手续合格通知书、授权通知书复印件 | 专利请求书或手续合格通知书、专利授权通知书复印件 | |
| 专利证原件(若授权下证) | 专利证原件(若授权下证) |
| 日期 | 法律信息 | 备注 |
| 申请号 | 专利名称 | 发布日期 |
| 202510229245X | 【发明】基于快速谱峭度与时间序列大模型的设备早期故障检测方法 | 2025/11/03 |
| 2024101098778 | 【发明】一种基于对比学习的中学几何问题自动求解方法 | 2025/10/27 |
| 2025110564649 | 【发明】基于混合双向时域卷积网络的数据处理方法、设备和介质 | 2025/10/24 |
| 202510473533X | 【发明】数据缺失场景下的时间序列预测方法、装置、介质及设备 | 2025/10/24 |
| 202510380855X | 【发明】一种基于多任务学习的SSD故障预测方法、设备及介质 | 2025/10/24 |
| 2024101797058 | 【发明】一种多元时间序列异常预测方法、电子设备及存储介质 | 2025/10/24 |
| 2023114681337 | 【发明】一种时序数据异常检测方法、电子设备及存储介质 | 2025/10/24 |
| 2025103939683 | 【发明】一种基于深度学习的代码相似度检测方法 | 2025/10/24 |
| 202510873852X | 【发明】一种智能化旋转机械故障诊断方法 | 2025/10/23 |
| 2024106839485 | 【发明】一种物联网数据监测方法及系统 | 2025/10/23 |