咨询电话:13280638997
传真:0533-3110363
邮箱:kefu@shizifang.com
摘 要:本发明公开了基于有效学习的端到端的结直肠息肉分割方法,该方法利用深度学习技术提出并设计全卷积神经网络结合完全连接的条件随机场递归神经网络的网络模型用于结直肠息肉分割。针对网络训练过程中息肉区域特征训练不足而无关组织学习过度的现象,引入有效学习损失函数,该损失函数借鉴了难例挖掘和边界感知思想。该损失函数借鉴了难例挖掘思想的目标函数,针对结直肠息肉前景区域和背景区域占比的不均匀问题,对样本训练误差加权处理,提升难例的关注程度,同时结合边界因子提升边界像素的关注度来提高轮廓分割的精度。
著 录 项:
专利/申请号: | CN202010389773.9 | 专利名称: | 基于有效学习的端到端的结直肠息肉图像分割方法 |
申请日: | 2020-05-11 | 申请/专利权人 | 北京工业大学 |
专利类型: | 发明 | 地址: | 北京市朝阳区平乐园100号 |
专利状态: | 已下证 查询审查信息 | 分类号: | G06T7/00搜分类 智慧医疗 CT图像 医学影像 医疗诊断 图像处理搜索 |
公开/公告日: | 2024-03-29 | 转让价格: | 面议 |
公开/公告号: | CN111784628B | 交易状态: | 等待洽谈 搜索相似专利 |
交易方 | 企业 | 个人 |
买家 | 营业执照副本复印件(需盖公章) | 身份证复印件(签字) |
专利转让委托书(需盖公章)一式两份 | 专利转让委托书(需签字)一式两份 | |
专利转让协议(需盖公章)一式两份 | 专利转让协议(需签字)一式两份 | |
卖家 | 营业执照副本复印件(需盖公章) | 身份证复印件(需申请人签字) |
解除代理委托书(需盖公章)一式两份(如专利通过代理机构申请) | 解除代理委托书(需签字)一式两份(如专利通过代理机构申请) | |
专利转让协议(需盖公章)一式两份 | 专利转让协议(需签字)一式两份 | |
专利请求书或手续合格通知书、授权通知书复印件 | 专利请求书或手续合格通知书、专利授权通知书复印件 | |
专利证原件(若授权下证) | 专利证原件(若授权下证) |
日期 | 法律信息 | 备注 |