咨询电话:13280638997
传真:0533-3110363
邮箱:kefu@shizifang.com
摘 要:本发明公开了一种基于深度学习的雾天下车辆检测方法,通过对采集到的雾天交通车辆图片进行图像预处理,采用深度残差网络模型对预处理后的雾天交通车辆图片进行特征提取,获取多个不同大小的特征图,然后对多个不同大小的特征图进行多尺度检测,得到多尺度检测特征图,提高特征提取精度,最后根据获取的多尺度检测特征图采用迁移学习方法对深度残差网络模型进行训练得到雾天下车辆检测网络模型,采用迁移学习方法精简了网络结构,不仅提高了检测速度,而且提高了目标检测精度,利用K‑means聚类方法进行聚类,得到网络所需的初始先验框的尺寸,对浅层网络的加深和整体框架的简化,提升了检测速度,简化了损失函数和预测的输出张量,提高了定位的效率。
著 录 项:
专利/申请号: | CN202010537207.8 | 专利名称: | 一种基于深度学习的雾天下车辆检测方法 |
申请日: | 2020-06-12 | 申请/专利权人 | 长安大学 |
专利类型: | 发明 | 地址: | 陕西省西安市南二环路中段 |
专利状态: | 已下证 查询审查信息 | 分类号: | G06V20/54搜分类 车辆 深度学习 检测搜索 |
公开/公告日: | 转让价格: | 面议 | |
公开/公告号: | 交易状态: | 等待洽谈 搜索相似专利 |
交易方 | 企业 | 个人 |
买家 | 营业执照副本复印件(需盖公章) | 身份证复印件(签字) |
专利转让委托书(需盖公章)一式两份 | 专利转让委托书(需签字)一式两份 | |
专利转让协议(需盖公章)一式两份 | 专利转让协议(需签字)一式两份 | |
卖家 | 营业执照副本复印件(需盖公章) | 身份证复印件(需申请人签字) |
解除代理委托书(需盖公章)一式两份(如专利通过代理机构申请) | 解除代理委托书(需签字)一式两份(如专利通过代理机构申请) | |
专利转让协议(需盖公章)一式两份 | 专利转让协议(需签字)一式两份 | |
专利请求书或手续合格通知书、授权通知书复印件 | 专利请求书或手续合格通知书、专利授权通知书复印件 | |
专利证原件(若授权下证) | 专利证原件(若授权下证) |
日期 | 法律信息 | 备注 |
2023/04/18 | 授权 | |
2020/10/20 | 实质审查的生效 | IPC(主分类): G06K 9/00 专利申请号: 202010537207.8 申请日: 2020.06.12 |
2020/09/22 | 公开 |