咨询电话:13280638997
传真:0533-3110363
邮箱:kefu@shizifang.com
摘 要:本发明提供一种基于物理定律和过程驱动的深度学习模型的水质预测方法,根据物理定律对深度学习模型的损失函数进行修改;使用水质模型生成水质指标的模拟时间序列数据;使用模拟数据对深度学习模型进行训练,得到预训练模型;使用水质指标的历史实测数据对预训练模型进行调整优化,得到物理约束和过程驱动的深度学习模型PRPGDL;最后,基于PRPGDL模型预测未来的水质指标数据。本发明相比水质模型需要更少的边界条件和参数、有更高的预测准确度、速度和灵活性;相比深度学习模型具有更高的准确性和通用性,并且需要更少的实测数据;提供准确度更高、泛化能力和适用性更强、实测数据需求更少的水质预测方法。
著 录 项:
专利/申请号: | CN202110435636.9 | 专利名称: | 基于物理定律和过程驱动的深度学习模型的水质预测方法 |
申请日: | 2021-04-22 | 申请/专利权人 | 中国地质大学(武汉) |
专利类型: | 发明 | 地址: | 湖北省武汉市洪山区鲁磨路388号 |
专利状态: | 已下证 查询审查信息 | 分类号: | G06N3/04搜分类 教学教具 学习模型 深度学习模型搜索 |
公开/公告日: | 2021-09-10 | 转让价格: | 面议 |
公开/公告号: | CN113379029A | 交易状态: | 等待洽谈 搜索相似专利 |
交易方 | 企业 | 个人 |
买家 | 营业执照副本复印件(需盖公章) | 身份证复印件(签字) |
专利转让委托书(需盖公章)一式两份 | 专利转让委托书(需签字)一式两份 | |
专利转让协议(需盖公章)一式两份 | 专利转让协议(需签字)一式两份 | |
卖家 | 营业执照副本复印件(需盖公章) | 身份证复印件(需申请人签字) |
解除代理委托书(需盖公章)一式两份(如专利通过代理机构申请) | 解除代理委托书(需签字)一式两份(如专利通过代理机构申请) | |
专利转让协议(需盖公章)一式两份 | 专利转让协议(需签字)一式两份 | |
专利请求书或手续合格通知书、授权通知书复印件 | 专利请求书或手续合格通知书、专利授权通知书复印件 | |
专利证原件(若授权下证) | 专利证原件(若授权下证) |
日期 | 法律信息 | 备注 |