咨询电话:13280638997
传真:0533-3110363
邮箱:kefu@shizifang.com
摘 要:本公开公开了基于自监督学习的图像分类方法及系统,获取待分类的无标签图像;对所有待分类的无标签图像进行预处理;对预处理后的每一个无标签图像进行特征提取;每一个无标签图像均得到与之对应的特征;从所有待分类的无标签图像中划分出一部分作为训练集;对训练集中所有无标签图像的特征进行聚类处理,确定每个特征所对应的类别,并对每个类别中的所有特征均打上对应的伪标签;特征的伪标签即为特征所对应无标签图像的伪标签;基于训练集中每一个无标签图像所提取的特征和伪标签,对预训练的神经网络进行再训练;将所有待分类的无标签图像的特征均输入到优化训练后的神经网络中,输出每一个待分类的无标签图像的伪标签。
著 录 项:
专利/申请号: | CN201911213999.7 | 专利名称: | 基于自监督学习的图像分类方法及系统 |
申请日: | 2019-12-02 | 申请/专利权人 | 齐鲁工业大学 |
专利类型: | 发明 | 地址: | 山东省济南市长清区大学路3501号 |
专利状态: | 已下证 查询审查信息 | 分类号: | G06V10/764搜分类 监督学习搜索 |
公开/公告日: | 2023-04-07 | 转让价格: | 面议 |
公开/公告号: | CN110909820B | 交易状态: | 等待洽谈 搜索相似专利 |
交易方 | 企业 | 个人 |
买家 | 营业执照副本复印件(需盖公章) | 身份证复印件(签字) |
专利转让委托书(需盖公章)一式两份 | 专利转让委托书(需签字)一式两份 | |
专利转让协议(需盖公章)一式两份 | 专利转让协议(需签字)一式两份 | |
卖家 | 营业执照副本复印件(需盖公章) | 身份证复印件(需申请人签字) |
解除代理委托书(需盖公章)一式两份(如专利通过代理机构申请) | 解除代理委托书(需签字)一式两份(如专利通过代理机构申请) | |
专利转让协议(需盖公章)一式两份 | 专利转让协议(需签字)一式两份 | |
专利请求书或手续合格通知书、授权通知书复印件 | 专利请求书或手续合格通知书、专利授权通知书复印件 | |
专利证原件(若授权下证) | 专利证原件(若授权下证) |
日期 | 法律信息 | 备注 |