咨询电话:13280638997
传真:0533-3110363
邮箱:kefu@shizifang.com
摘 要:本发明公开了一种基于深度学习的旋转机械故障智能分类方法,该方法通过对振动信号进行频域特征提取,对数据降维后利用深度神经网络进行分类,利用子信号测试训练的深度神经网络,根据测试结果修改样本标签,实现对不同故障信号的分类。本发明的方法将无监督训练与有监督训练相结合,整个过程自动完成,无需人工干预,自动提取特征并对故障信号分类。本发明的方法特别适合长数据故障信号的分类处理,具有广阔的工业应用前景。
著 录 项:
专利/申请号: | CN201710815085.2 | 专利名称: | 一种基于深度学习的旋转机械故障智能分类方法 |
申请日: | 2017-09-07 | 申请/专利权人 | 天津工业大学 |
专利类型: | 发明 | 地址: | 天津市西青区宾水西道399号 |
专利状态: | 已下证 查询审查信息 | 分类号: | G01M13/00搜分类 机械 深度学习 旋转 机械制造 智能分类搜索 |
公开/公告日: | 转让价格: | 面议 | |
公开/公告号: | 交易状态: | 等待洽谈 搜索相似专利 |
交易方 | 企业 | 个人 |
买家 | 营业执照副本复印件(需盖公章) | 身份证复印件(签字) |
专利转让委托书(需盖公章)一式两份 | 专利转让委托书(需签字)一式两份 | |
专利转让协议(需盖公章)一式两份 | 专利转让协议(需签字)一式两份 | |
卖家 | 营业执照副本复印件(需盖公章) | 身份证复印件(需申请人签字) |
解除代理委托书(需盖公章)一式两份(如专利通过代理机构申请) | 解除代理委托书(需签字)一式两份(如专利通过代理机构申请) | |
专利转让协议(需盖公章)一式两份 | 专利转让协议(需签字)一式两份 | |
专利请求书或手续合格通知书、授权通知书复印件 | 专利请求书或手续合格通知书、专利授权通知书复印件 | |
专利证原件(若授权下证) | 专利证原件(若授权下证) |
日期 | 法律信息 | 备注 |