咨询电话:13280638997
传真:0533-3110363
邮箱:kefu@shizifang.com
摘 要:本发明提出一种基于GCN和GRU增强U‑Net特征的高光谱分类方法,所述方法为解决高光谱波段数据之间的类内高变异性和类间的相似性提供了新的解决方案。针对传统模型忽略特征之间所存在的潜在关系,提出使用图神经网络(GCN)和门控循环单元(GRU)获取U‑Net下采样特征之间的潜在关系,同时注意力机制用于根据上下文特征的重要程度学习得到新的特征。该方法将下采样得到的较混乱的特征转化为高内聚低耦合的特征,为下游的任务提供干净可靠的数据。同时该方法在小样本高光谱上只需要迭代很少次就能取得十分优异的结果。
著 录 项:
专利/申请号: | CN202110212923.3 | 专利名称: | 一种基于GCN和GRU增强U-Net特征的高光谱分类方法及系统 |
申请日: | 2021-02-25 | 申请/专利权人 | 东北林业大学 |
专利类型: | 发明 | 地址: | 黑龙江省哈尔滨市香坊区和兴路26号 |
专利状态: | 已下证 查询审查信息 | 分类号: | G06K9/00搜分类 C R 港口 高光谱搜索 |
公开/公告日: | 转让价格: | 面议 | |
公开/公告号: | 交易状态: | 等待洽谈 搜索相似专利 |
交易方 | 企业 | 个人 |
买家 | 营业执照副本复印件(需盖公章) | 身份证复印件(签字) |
专利转让委托书(需盖公章)一式两份 | 专利转让委托书(需签字)一式两份 | |
专利转让协议(需盖公章)一式两份 | 专利转让协议(需签字)一式两份 | |
卖家 | 营业执照副本复印件(需盖公章) | 身份证复印件(需申请人签字) |
解除代理委托书(需盖公章)一式两份(如专利通过代理机构申请) | 解除代理委托书(需签字)一式两份(如专利通过代理机构申请) | |
专利转让协议(需盖公章)一式两份 | 专利转让协议(需签字)一式两份 | |
专利请求书或手续合格通知书、授权通知书复印件 | 专利请求书或手续合格通知书、专利授权通知书复印件 | |
专利证原件(若授权下证) | 专利证原件(若授权下证) |
日期 | 法律信息 | 备注 |