咨询电话:13280638997
传真:0533-3110363
邮箱:kefu@shizifang.com
摘 要:本发明方法明确地将半监督数据表示和分类误差结合到现有的投影非负矩阵分解框架进行联合最小化学习,由此将权重系数构造和标签传播过程作用于投影非负矩阵分解,可有效避免原始数据中可能包含的噪音、破坏或异类对相似性度量和标签预测结果的负面影响。此外,上述联合最小化过程也可在投影非负矩阵分解过程中有效保持邻域信息和空间结构,得到更准确的数据表示结果。此外,还将权重构建和归纳学习整合到一个统一的模型中,可得到自适应的权重系数矩阵,进而避免传统算法中选取最优近邻难的问题。本发明方法为诱导式模型,可完成样本外数据的归纳与预测,无需引入额外的重构过程,可拓展性能好。
著 录 项:
专利/申请号: | CN201711140254.3 | 专利名称: | 一种诱导式非负投影半监督数据分类方法及系统 |
申请日: | 2017-11-16 | 申请/专利权人 | |
专利类型: | 发明 | 地址: | |
专利状态: | 已下证 查询审查信息 | 分类号: | G06K9/62搜分类 数据分搜索 |
公开/公告日: | 转让价格: | 面议 | |
公开/公告号: | 交易状态: | 等待洽谈 搜索相似专利 |
交易方 | 企业 | 个人 |
买家 | 营业执照副本复印件(需盖公章) | 身份证复印件(签字) |
专利转让委托书(需盖公章)一式两份 | 专利转让委托书(需签字)一式两份 | |
专利转让协议(需盖公章)一式两份 | 专利转让协议(需签字)一式两份 | |
卖家 | 营业执照副本复印件(需盖公章) | 身份证复印件(需申请人签字) |
解除代理委托书(需盖公章)一式两份(如专利通过代理机构申请) | 解除代理委托书(需签字)一式两份(如专利通过代理机构申请) | |
专利转让协议(需盖公章)一式两份 | 专利转让协议(需签字)一式两份 | |
专利请求书或手续合格通知书、授权通知书复印件 | 专利请求书或手续合格通知书、专利授权通知书复印件 | |
专利证原件(若授权下证) | 专利证原件(若授权下证) |
日期 | 法律信息 | 备注 |