咨询电话:13280638997
传真:0533-3110363
邮箱:kefu@shizifang.com
摘 要:本发明公开了一种基于深度学习的无参考图像质量客观评价方法,其将待评价的失真图像进行多分辨率金字塔和高斯差分分解后,对子带图像做简单的局部归一化就可以提取自然统计特征,不需要到变换域提取特征,从而复杂度大幅降低;本发明方法无需参考图像、无需失真类型,用自然统计特性的丢失程度衡量图像的失真程度;本发明方法能够客观地反映图像受到各种图像处理和压缩方法影响下视觉质量的变化情况,并且本发明方法的评价性能不受图像内容和失真类型的影响,与人眼的主观感知一致;采用现有的L矩估计方法估计灰度直方图的包络曲线的分布参数,估计得到的分布参数更加准确,具有更强的泛化能力。
著 录 项:
专利/申请号: | CN201510523373.1 | 专利名称: | 一种基于深度学习的无参考图像质量客观评价方法 |
申请日: | 2015-08-24 | 申请/专利权人 | |
专利类型: | 发明 | 地址: | |
专利状态: | 已下证 查询审查信息 | 分类号: | H04N17/00搜分类 深度学习 图像质量搜索 |
公开/公告日: | 转让价格: | 面议 | |
公开/公告号: | 交易状态: | 等待洽谈 搜索相似专利 |
交易方 | 企业 | 个人 |
买家 | 营业执照副本复印件(需盖公章) | 身份证复印件(签字) |
专利转让委托书(需盖公章)一式两份 | 专利转让委托书(需签字)一式两份 | |
专利转让协议(需盖公章)一式两份 | 专利转让协议(需签字)一式两份 | |
卖家 | 营业执照副本复印件(需盖公章) | 身份证复印件(需申请人签字) |
解除代理委托书(需盖公章)一式两份(如专利通过代理机构申请) | 解除代理委托书(需签字)一式两份(如专利通过代理机构申请) | |
专利转让协议(需盖公章)一式两份 | 专利转让协议(需签字)一式两份 | |
专利请求书或手续合格通知书、授权通知书复印件 | 专利请求书或手续合格通知书、专利授权通知书复印件 | |
专利证原件(若授权下证) | 专利证原件(若授权下证) |
日期 | 法律信息 | 备注 |