咨询电话:13280638997
传真:0533-3110363
邮箱:kefu@shizifang.com
摘 要:本发明公开了一种基于深度学习及声音识别的机器设备状态监测系统。包括训练数据采集模块采集声音信号;人工标记模块对声音信号进行标记形成声音样本库;声音样本经预处理和特征提取被送入预设神经网络模型进行训练;实时数据采集模块采集声音信号并送入训练后的神经网络模型;状态识别模块结合人工经验通过声音信号对机器运行状态进行综合识别判断,并将结果进行反馈及输出。本发明不仅可以实时监测机器设备运行状态,同时在机器设备发生故障或处于危险状态时发出报警信号,通知设备管理员及时进行维护,提高工作效率;同时由于采用深度学习算法结合人工经验对神经网络模型进行训练,因而具有识别准确性高、安全性好、效率高和智能化等优点。
著 录 项:
专利/申请号: | CN201911222026.X | 专利名称: | 一种基于深度学习及声音识别的机器设备状态监测系统 |
申请日: | 2019-12-03 | 申请/专利权人 | 桂林理工大学 |
专利类型: | 发明 | 地址: | 广西壮族自治区桂林市建干路12号 |
专利状态: | 已下证 查询审查信息 | 分类号: | G10L25/51搜分类 其他搜索 |
公开/公告日: | 2024-04-05 | 转让价格: | 面议 |
公开/公告号: | CN110867196B | 交易状态: | 等待洽谈 搜索相似专利 |
交易方 | 企业 | 个人 |
买家 | 营业执照副本复印件(需盖公章) | 身份证复印件(签字) |
专利转让委托书(需盖公章)一式两份 | 专利转让委托书(需签字)一式两份 | |
专利转让协议(需盖公章)一式两份 | 专利转让协议(需签字)一式两份 | |
卖家 | 营业执照副本复印件(需盖公章) | 身份证复印件(需申请人签字) |
解除代理委托书(需盖公章)一式两份(如专利通过代理机构申请) | 解除代理委托书(需签字)一式两份(如专利通过代理机构申请) | |
专利转让协议(需盖公章)一式两份 | 专利转让协议(需签字)一式两份 | |
专利请求书或手续合格通知书、授权通知书复印件 | 专利请求书或手续合格通知书、专利授权通知书复印件 | |
专利证原件(若授权下证) | 专利证原件(若授权下证) |
日期 | 法律信息 | 备注 |