咨询电话:13280638997
传真:0533-3110363
邮箱:kefu@shizifang.com
著 录 项 目:
专利/申请号: | CN201910443855.4 | 专利名称: | 一种基于深度学习的电涡流扫描图像分类识别方法 |
申请日: | 2019-05-27 | 申请/专利权人 | 昆明理工大学 |
专利类型: | 发明 | 地址: | 云南省昆明市呈贡区景明南路727号 |
专利状态: | 已下证 查询审查信息 | 分类号: | G06K9/46分类检索 扫描仪 深度学习专利转让搜索 |
公开/公告日: | 2019-08-30 | 转让价格: | 面议 【平台担保交易】 |
公开/公告号: | CN110188774A | 交易状态: | 等待洽谈 搜索相似专利 |
摘 要:本发明公开了一种基于深度学习的电涡流扫描图像分类识别方法,步骤为:S1、采集被测材料的电涡流扫描图像,并进行预处理;S2、构建训练样本与测试样本;S3、使用Sobel算子处理,得到去背景化的训练样本;S4、构建多个稀疏降噪自编码器,并初始化;S5、输入训练样本与去背景化的训练样本,对多个稀疏降噪自编码器进行无监督的逐层自学习预训练;S6、将多个训练好的稀疏降噪编码器的编码网络提取出来进行栈式组合构建栈式稀疏降噪自编码深度神经网络;S7、结合数据标签,使用BP算法与批量梯度下降法对深度神经网络进行微调;S8、将测试样本输入深度神经网络进行性能测试。该方法使隐含层提取到的图像特征能更加简明地反映材料缺陷,有利于分类准确率提高。
交易方 | 企业 | 个人 |
买家 | 营业执照副本复印件(需盖公章) | 身份证复印件(签字) |
专利转让委托书(需盖公章)一式两份 | 专利转让委托书(需签字)一式两份 | |
专利转让协议(需盖公章)一式两份 | 专利转让协议(需签字)一式两份 | |
卖家 | 营业执照副本复印件(需盖公章) | 身份证复印件(需申请人签字) |
解除代理委托书(需盖公章)一式两份(如专利通过代理机构申请) | 解除代理委托书(需签字)一式两份(如专利通过代理机构申请) | |
专利转让协议(需盖公章)一式两份 | 专利转让协议(需签字)一式两份 | |
专利请求书或手续合格通知书、授权通知书复印件 | 专利请求书或手续合格通知书、专利授权通知书复印件 | |
专利证原件(若授权下证) | 专利证原件(若授权下证) |
日期 | 法律信息 | 备注 |