咨询电话:13280638997
传真:0533-3110363
邮箱:kefu@shizifang.com
摘 要:本发明涉及基于融合主题信息增强PU学习的事件相关新闻过滤的学习方法。本发明将已标注和未标注的事件相关新闻数据集通过无监督预训练的方式进行主题信息抽取,再将抽取到的主题信息加入到PU学习的初次训练和后续的迭代训练过程中,确保在初始事件相关新闻样本较少的情况下能利用到更多的样本信息,并且在后续的迭代训练过程中都进行主题增强,使得每次迭代训练出来的分类器都能从未标注数据中获取到真正可靠的正负样本数据,来提高最终事件相关新闻分类器的性能。本发明比PU学习的基线模型,F1值提高了1.8%,且在低初始样本和高迭代的情况下领先更多。本发明利用主题信息增强PU学习的方法能有效解决与案例相关的新闻过滤任务中缺乏训练数据的问题。
著 录 项:
专利/申请号: | CN202110347488.5 | 专利名称: | 基于融合主题信息增强PU学习的事件相关新闻过滤的学习方法 |
申请日: | 2021-03-31 | 申请/专利权人 | 昆明理工大学 |
专利类型: | 发明 | 地址: | 云南省昆明市五华区学府路253号 |
专利状态: | 已下证 查询审查信息 | 分类号: | G06F16/9532搜分类 P 港口搜索 |
公开/公告日: | 2023-08-29 | 转让价格: | 面议 |
公开/公告号: | CN113641888B | 交易状态: | 等待洽谈 搜索相似专利 |
交易方 | 企业 | 个人 |
买家 | 营业执照副本复印件(需盖公章) | 身份证复印件(签字) |
专利转让委托书(需盖公章)一式两份 | 专利转让委托书(需签字)一式两份 | |
专利转让协议(需盖公章)一式两份 | 专利转让协议(需签字)一式两份 | |
卖家 | 营业执照副本复印件(需盖公章) | 身份证复印件(需申请人签字) |
解除代理委托书(需盖公章)一式两份(如专利通过代理机构申请) | 解除代理委托书(需签字)一式两份(如专利通过代理机构申请) | |
专利转让协议(需盖公章)一式两份 | 专利转让协议(需签字)一式两份 | |
专利请求书或手续合格通知书、授权通知书复印件 | 专利请求书或手续合格通知书、专利授权通知书复印件 | |
专利证原件(若授权下证) | 专利证原件(若授权下证) |
日期 | 法律信息 | 备注 |