欢迎使用淄博智来知识产权服务有限公司柿子坊专利交易平台,本站提供专利转让评估管理交易,商标转让评估管理交易、知识产权转让评估交易等服务
1328063899724小时咨询热线
13280638997
  • 检索范围
  • 专利名称:一种基于生成模型与判别分类模型的图像半监督分类方法      申请号:2022108554151     转让价格:面议  收藏
    法律状态:已下证   类型:发明   关键词:图像智能分析 图像分类 计算机视觉 图像特征提取 机器学习算法   相似专利 发布日:2025/07/10  
    摘要: 本发明提供一种基于生成模型与判别分类模型的图像半监督分类方法,包括以下步骤:S1、构建SVM判别分类模型,利用1000个有标签数据对模型进行训练;S2、构建生成模型,利用生成模型推测出未标签数据,得到伪标签数据;S3、将步骤S2获得的伪标签数据和步骤S1中获得的有标签数据重新训练SVM判别分类模型;S4、测试重新训练SVM判别分类模型的准确率,重复步骤S2‑S3,直至模型的准确率达到设定目标。本发明结合生成式神经网络模型与SVM判别分类模型对数字图像进行准确半监督分类,能够准确高效地对手写数字图像进行半监督分类,即利用少量标记数据便可以获得较优的分类准确率。
  • 专利名称:一种基于深度半监督模型的图像细粒度分类方法      申请号:2022107874167     转让价格:面议  收藏
    法律状态:已下证   类型:发明   关键词:图像智能分析 图像分类 计算机视觉 图像特征提取 机器学习算法   相似专利 发布日:2025/07/10  
    摘要: 本发明提供一种基于深度半监督模型的图像细粒度分类方法,包括以下步骤:S1、获取原始图片,提取原始图片图像特征,组成全局特征矩阵;S2、对原始图片进行超像素分割,计算得出成特征分配映射;S3、将全局特征矩阵和特征分配映射进行非线性特征编码,得到超像素局部区域特征;S4、检测每个部分的发生概率,利用对齐概率分布得到超像素区域发生概率正则化项;S5、创建半监督神经网络,根据超像素区域发生概率正则化项和损伤函数训练半监督神经网络;S6、用训练好的半监督神经网络进行图像细粒度分类。本发明能够准确高效地对手写数字和医学细胞图像进行细粒度分类,兼具更优的图像细粒度分类准确率。
  • 第1页/共1页;本页2条记录/共2条记录 1       
    用户指南
    交易方式
    关于柿子坊
    关注微信公众号
    智来知识产权公众号
    联系我们
    咨询电话:13280638997  
    传真:0533-3110363
    邮箱:kefu@shizifang.com
    CopyRight©2016 by 淄博智来知识产权服务有限公司  All Rights Reserved  专利转让_商标转让_知识产权转让评估买卖_智来柿子坊专利交易平台
    地址:山东省淄博市张店区人民路与北京路路口银街3号华侨大厦
    鲁ICP备16031200号   鲁公网安备 37030302000778号