咨询电话:13280638997
传真:0533-3110363
邮箱:kefu@shizifang.com
摘 要:本发明公开了一种基于深度学习的微震信号分类辨识方法,属于信号分析及识别领域。本发明方法包括以下步骤:步骤1、建立微震信号与爆破信号的样本数据库;步骤2、提取样本信号的主频、峰后衰减系数和能量重心系数特征,构成样本特征数据训练集和测试集;步骤3、使用样本特征数据训练集训练深度神经网络分类辨识模型,利用测试集数据验证信号分类辨识模型的分类辨识效果,并通过交叉训练不断提升分类精度;步骤4、提取待辨识信号的特征向量,输入信号分类模型中,得到辨识结果。本发明方法具有算法简单、自适应性和实时性强、辨识准确率高的特点,能对煤矿微震信号和爆破信号进行有效的分类,具有很好的技术价值和应用前景。
著 录 项:
专利/申请号: | CN201910348744.5 | 专利名称: | 一种基于深度学习的微震信号分类辨识方法 |
申请日: | 2019-06-05 | 申请/专利权人 | 山东科技大学 |
专利类型: | 发明 | 地址: | 山东省青岛市黄岛区前湾港路579号山东科技大学 |
专利状态: | 已下证 查询审查信息 | 分类号: | G01V1/28搜分类 深度学习 微 微生物采样搜索 |
公开/公告日: | 2020-11-10 | 转让价格: | 面议 |
公开/公告号: | CN110133714B | 交易状态: | 等待洽谈 搜索相似专利 |
交易方 | 企业 | 个人 |
买家 | 营业执照副本复印件(需盖公章) | 身份证复印件(签字) |
专利转让委托书(需盖公章)一式两份 | 专利转让委托书(需签字)一式两份 | |
专利转让协议(需盖公章)一式两份 | 专利转让协议(需签字)一式两份 | |
卖家 | 营业执照副本复印件(需盖公章) | 身份证复印件(需申请人签字) |
解除代理委托书(需盖公章)一式两份(如专利通过代理机构申请) | 解除代理委托书(需签字)一式两份(如专利通过代理机构申请) | |
专利转让协议(需盖公章)一式两份 | 专利转让协议(需签字)一式两份 | |
专利请求书或手续合格通知书、授权通知书复印件 | 专利请求书或手续合格通知书、专利授权通知书复印件 | |
专利证原件(若授权下证) | 专利证原件(若授权下证) |
日期 | 法律信息 | 备注 |
2020/11/10 | 授权 | |
2019/09/10 | 实质审查的生效 | IPC(主分类): G01V 1/28 专利申请号: 201910348744.5 申请日: 2019.06.05 |
2019/08/16 | 公开 |