咨询电话:13280638997
传真:0533-3110363
邮箱:kefu@shizifang.com
摘 要:一种基于语义向量的知识图谱表示学习方法,包括以下步骤:1)融合文本语料库的语义向量构建;2)融合文本语料库及知识图谱上下文的语义向量构建;3)语义矩阵的构建,过程如下:以三元组和关系的语义向量作为输入,得到每个关系对应的语义矩阵;4)建模与训练,过程如下:设计了一个新的得分函数对知识图谱中实体和关系的嵌入表示进行建模,得到所述知识图谱的嵌入表示模型;使用随机梯度下降法训练所述嵌入表示模型,使得损失函数的值最小化,得到最终知识图谱中实体和关系的语义向量。本发明提出的表示学习方体能够较为对知识图谱的复杂关系进行建模,并能够提高向量表示的精确度。
著 录 项:
专利/申请号: | CN201911344270.3 | 专利名称: | 一种基于语义向量的知识图谱表示学习方法 |
申请日: | 2019-12-24 | 申请/专利权人 | 浙江工业大学 |
专利类型: | 发明 | 地址: | 浙江省杭州市下城区朝晖六区潮王路18号 |
专利状态: | 已下证 查询审查信息 | 分类号: | G06F16/36搜分类 人工智能 表 港口搜索 |
公开/公告日: | 转让价格: | 面议 | |
公开/公告号: | 交易状态: | 等待洽谈 搜索相似专利 |
交易方 | 企业 | 个人 |
买家 | 营业执照副本复印件(需盖公章) | 身份证复印件(签字) |
专利转让委托书(需盖公章)一式两份 | 专利转让委托书(需签字)一式两份 | |
专利转让协议(需盖公章)一式两份 | 专利转让协议(需签字)一式两份 | |
卖家 | 营业执照副本复印件(需盖公章) | 身份证复印件(需申请人签字) |
解除代理委托书(需盖公章)一式两份(如专利通过代理机构申请) | 解除代理委托书(需签字)一式两份(如专利通过代理机构申请) | |
专利转让协议(需盖公章)一式两份 | 专利转让协议(需签字)一式两份 | |
专利请求书或手续合格通知书、授权通知书复印件 | 专利请求书或手续合格通知书、专利授权通知书复印件 | |
专利证原件(若授权下证) | 专利证原件(若授权下证) |
日期 | 法律信息 | 备注 |
2021/10/15 | 授权 | |
2020/06/19 | 实质审查的生效 | IPC(主分类): G06F 16/36 专利申请号: 201911344270.3 申请日: 2019.12.24 |
2020/05/26 | 公开 |