咨询电话:13280638997
传真:0533-3110363
邮箱:kefu@shizifang.com
摘 要:本发明涉及一种基于强化学习的交通流多步预测方法,包括以下步骤:首先对原始交通数据进行筛选和统计,得到特定路段的速度数据以及该路段两端交叉口的流量数据。紧接着对这些数据进行预处理,包括补齐缺失数据、处理错误数据和数据归一化;然后建立基于DDPG结构的交通流多步预测模型,确定模型中强化学习三要素在交通流多步预测任务下的对应内容,确定交通流多步预测任务中智能体与环境的交互内容。最后,使用预处理好的数据训练所建立的交通流多步预测模型,并调整模型中的参数以获得最优的交通流多步预测效果。实验结果验证了模型在交通流多步预测任务上的有效性,并为使用强化学习解决多步预测任务提供新的思路和方法。
著 录 项:
专利/申请号: | CN201910653135.0 | 专利名称: | 一种基于强化学习的交通流多步预测方法 |
申请日: | 2019-07-19 | 申请/专利权人 | 浙江工业大学 |
专利类型: | 发明 | 地址: | 浙江省杭州市下城区潮王路18号 |
专利状态: | 已下证 查询审查信息 | 分类号: | G08G1/01搜分类 人工智能 化学化工搜索 |
公开/公告日: | 转让价格: | 面议 | |
公开/公告号: | 交易状态: | 等待洽谈 搜索相似专利 |
交易方 | 企业 | 个人 |
买家 | 营业执照副本复印件(需盖公章) | 身份证复印件(签字) |
专利转让委托书(需盖公章)一式两份 | 专利转让委托书(需签字)一式两份 | |
专利转让协议(需盖公章)一式两份 | 专利转让协议(需签字)一式两份 | |
卖家 | 营业执照副本复印件(需盖公章) | 身份证复印件(需申请人签字) |
解除代理委托书(需盖公章)一式两份(如专利通过代理机构申请) | 解除代理委托书(需签字)一式两份(如专利通过代理机构申请) | |
专利转让协议(需盖公章)一式两份 | 专利转让协议(需签字)一式两份 | |
专利请求书或手续合格通知书、授权通知书复印件 | 专利请求书或手续合格通知书、专利授权通知书复印件 | |
专利证原件(若授权下证) | 专利证原件(若授权下证) |
日期 | 法律信息 | 备注 |
2020/11/13 | 授权 | |
2019/11/01 | 实质审查的生效 | IPC(主分类): G08G 1/01 专利申请号: 201910653135.0 申请日: 2019.07.19 |
2019/10/01 | 公开 |