咨询电话:13280638997
传真:0533-3110363
邮箱:kefu@shizifang.com
摘 要:本发明公开了一种基于深度学习的异步电动机故障监测与诊断方法,包括以下步骤:获取异步电动机在已知工况类型时的电力负荷时间序列,其时间跨度为Num1个电力负荷周期,且每个样本时刻的电力负荷数据包括电压、电流和功率三个维度的数据;以电压、电流和功率数据分别作为RGB图像中三个图层的像素点灰度值,将每个电力负荷周期的时间序列片段转化为1张RGB图像,每个电力负荷时间序列相应得到一组特征图像时间序列;以异步电动机的特征图像时间序列和相应的工况类型,训练深度神经网络,得到故障诊断模型,从而用于对待测异步电动机进行工况分类。本发明方法的故障诊断正确率高,在节省系统开发时间的同时,也降低了从业人员的门槛。
著 录 项:
专利/申请号: | CN201910471732.1 | 专利名称: | 一种基于深度学习的异步电动机故障监测与诊断方法 |
申请日: | 2019-05-31 | 申请/专利权人 | 中南大学 |
专利类型: | 发明 | 地址: | 湖南省长沙市岳麓区麓山南路932号 |
专利状态: | 已下证 查询审查信息 | 分类号: | G01R31/34搜分类 机电搜索 |
公开/公告日: | 转让价格: | 16400.0元 | |
公开/公告号: | 交易状态: | 等待洽谈 搜索相似专利 |
交易方 | 企业 | 个人 |
买家 | 营业执照副本复印件(需盖公章) | 身份证复印件(签字) |
专利转让委托书(需盖公章)一式两份 | 专利转让委托书(需签字)一式两份 | |
专利转让协议(需盖公章)一式两份 | 专利转让协议(需签字)一式两份 | |
卖家 | 营业执照副本复印件(需盖公章) | 身份证复印件(需申请人签字) |
解除代理委托书(需盖公章)一式两份(如专利通过代理机构申请) | 解除代理委托书(需签字)一式两份(如专利通过代理机构申请) | |
专利转让协议(需盖公章)一式两份 | 专利转让协议(需签字)一式两份 | |
专利请求书或手续合格通知书、授权通知书复印件 | 专利请求书或手续合格通知书、专利授权通知书复印件 | |
专利证原件(若授权下证) | 专利证原件(若授权下证) |
日期 | 法律信息 | 备注 |