咨询电话:13280638997
传真:0533-3110363
邮箱:kefu@shizifang.com
摘 要:基于改进LSTM神经网络的阀控铅酸蓄电池健康状态预测方法,通过在线监测装置每日测量得到蓄电池的浮充电压、均充电流、均充时长、放电截止电压、放电时长输入数据,蓄电池容量通过每两个月一次的核对性均衡充电测得。以n天为时间跨度,建立n维的样本输入x(ti)。以蓄电池容量数据序列h(ti)作为输出,x(ti)作为输入,建立一个包含多个LSTM神经网络单元的神经网络模型。初始状态下,通过随机生成0到1之间的小数,为网络中的权重矩阵W和偏置矩阵b进行赋值。引入Dropout算法改进LSTM神经网络模型,对其训练过程进行改进。本发明可以减少因数据样本不足导致的预测精度过低和欠拟合问题,对变电站蓄电池健康状态进行准确预测,提高蓄电池利用率。
著 录 项:
专利/申请号: | CN202010605779.5 | 专利名称: | 基于改进LSTM神经网络的阀控铅酸蓄电池健康状态预测方法 |
申请日: | 2020-06-29 | 申请/专利权人 | 三峡大学 |
专利类型: | 发明 | 地址: | 湖北省宜昌市西陵区大学路8号 |
专利状态: | 已下证 查询审查信息 | 分类号: | G01R31/392搜分类 电池安全 铅酸电池 直流电源系统 变电站安全 电力电网搜索 |
公开/公告日: | 2020-10-02 | 转让价格: | 面议 |
公开/公告号: | CN111736084A | 交易状态: | 等待洽谈 搜索相似专利 |
交易方 | 企业 | 个人 |
买家 | 营业执照副本复印件(需盖公章) | 身份证复印件(签字) |
专利转让委托书(需盖公章)一式两份 | 专利转让委托书(需签字)一式两份 | |
专利转让协议(需盖公章)一式两份 | 专利转让协议(需签字)一式两份 | |
卖家 | 营业执照副本复印件(需盖公章) | 身份证复印件(需申请人签字) |
解除代理委托书(需盖公章)一式两份(如专利通过代理机构申请) | 解除代理委托书(需签字)一式两份(如专利通过代理机构申请) | |
专利转让协议(需盖公章)一式两份 | 专利转让协议(需签字)一式两份 | |
专利请求书或手续合格通知书、授权通知书复印件 | 专利请求书或手续合格通知书、专利授权通知书复印件 | |
专利证原件(若授权下证) | 专利证原件(若授权下证) |
日期 | 法律信息 | 备注 |