咨询电话:13280638997
传真:0533-3110363
邮箱:kefu@shizifang.com
摘 要:本发明提供一种基于多样化集成卷积神经网络的机械故障预测方法,包括一以下步骤:数据预处理;构造基于多样性指标的集成深度学习故障预测模型;训练基于多样性指标的集成深度学习故障预测模型。本发明通过设定该模型的学习率为循环余弦学习率机制,使其能在训练过程中多次逼近局部最优值后,通过热重启实现继续搜索,同时在训练模型阶段,构造多样性指标和多样性损失函数,促使该模型发现与原有局部最优值差异化更大的新局部最优值。最后对所有局部最优值的卷积神经网络模型进行集成。本发明的有益效果是:该方法提高了故障预测的精度及效率,且适用性较好,有利于在实际应用中推广使用。
著 录 项:
专利/申请号: | CN202010154764.1 | 专利名称: | 一种基于多样化集成卷积神经网络的机械故障预测方法 |
申请日: | 2020-03-08 | 申请/专利权人 | 中国地质大学(武汉) |
专利类型: | 发明 | 地址: | 湖北省武汉市洪山区鲁磨路388号 |
专利状态: | 已下证 查询审查信息 | 分类号: | G01M13/00搜分类 网络传输 卷积神经网络 机械制造搜索 |
公开/公告日: | 2021-05-14 | 转让价格: | 面议 |
公开/公告号: | CN111397870B | 交易状态: | 等待洽谈 搜索相似专利 |
交易方 | 企业 | 个人 |
买家 | 营业执照副本复印件(需盖公章) | 身份证复印件(签字) |
专利转让委托书(需盖公章)一式两份 | 专利转让委托书(需签字)一式两份 | |
专利转让协议(需盖公章)一式两份 | 专利转让协议(需签字)一式两份 | |
卖家 | 营业执照副本复印件(需盖公章) | 身份证复印件(需申请人签字) |
解除代理委托书(需盖公章)一式两份(如专利通过代理机构申请) | 解除代理委托书(需签字)一式两份(如专利通过代理机构申请) | |
专利转让协议(需盖公章)一式两份 | 专利转让协议(需签字)一式两份 | |
专利请求书或手续合格通知书、授权通知书复印件 | 专利请求书或手续合格通知书、专利授权通知书复印件 | |
专利证原件(若授权下证) | 专利证原件(若授权下证) |
日期 | 法律信息 | 备注 |